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SELF-CONSISTENT MANY-ELECTRON  THEORY OF 

ELECTRON WORK FUNCTIONS AND SURFACE POTENTIAL 

CHARACTERISTICS  FOR SELECTED METALS* 

by John R. Smith 

Lewis  Research  Center 
National  Aeronautics  and  Space  Administration 

C leveland, Ohio 

ABSTRACT 

Electron  work  functions,  surface  potentiale,  and  electron  number  density 

distributions and electric  fields in the surface  region of 26 metals are calculated 

from first principles  within  the free electron  model.  The  number of qqfree '9  

electrons per atom is taken as the  group  number as llsted in  the periodic  table. 

Grain  orientation  effects a r e  not considered,  The  calculation  proceeds  from 

a n  expression of the total  energy as a functional of the electron  number  density 

including  exchange  and  correlation  energiee a8 well as a first inhomogeneity 

term. The self-consistent  solution is then  obtained via a variational  procedure 

akin to the Ritz  method.  Surface  barriers  are found, in  most  cases, to be due 

principnlly  to many-body effects,  but  dipole  barriers  are  small onlyfor a number 

of alkali metab,  becoming  quite  large for the tranrition  metalr. Ar one might 

expect, surface energies are found to be inadequately  dercribed by thir model 

which neglectr  atomistic  effects.  Conridering  the  simplicity of the model, 

rearonable results are obtained for electron work functionr  and  rurface  potential 
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characteristics for all metals  studied,  maximum  electron  densities  varying by 

a factor of over 60. 

INTRODUCTION 

The wealth of experimental data available today  on electronic  work  functions 

of bare metal  surfaces is not a t  all matched by theoretical  calculations.  There 

have  been  numerous  empirical  correlations  made relating the  electron  work 

function of metals to atomic  volume,  compressibility,  the first atomic  ioniza- 

tion  potential, the energy of the lattice,  surface energy, and electronegativity. 

1 

These  efforts are enumerated by Samsonov  et  a1 (see also L. N. Dobretsov 2 3 

et a1  and D. Steiner  et al). Also,  some  efforts  have  been  made  toward  formu- 

lating a first  principles  description of various  aspects of this quantity5-' for 

certain  metals.  However, such calculations of the total (bulk plus surface 

contribution)  electron  work  function  have been provided  only for the alkali 

metals.  The  most  sophisticated of these is that  formulated by Bardeen" for 

4 

Na. A free electron  model was  used and the  Hartree-Fock  equations were 

solved  approximately. 

This is in  contrast  to  the  progress  made in  overlapping areas. For example, 

many-electron"  and  atomistic  effects12  have been included in  theoretical 

studies of bulk metallic  properties of many  metals.  Likewise,  many-electron 

effects  and  some  atomistic  effects  have been included in the  theory of adsorption 

on metals13  using  modern  formulations of the many-electron  problem. 

A second  topic  considered here which is related  to  the  electron work function 

is that of the surface potential.  Recently, a calculation of the  surface  poten- 

tial of Na which refines  Bardeen's work by making use of a modern  many-electron 

formulation" has been provided by b u c k s  and  Cutler14 (see also Ref.  15). 
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However,  these  authors  neglect  the  effect of the surface  dipole  potential  and 

place an  infinitely high potential  barrier  at the surface in  order  to  calculate 

wave functions. The first  assumption may  well  be  reasonable  for Na, but 

it will  be shown that  dipole bar r ie rs  cannot  be  neglected for  most of the metals 

studied here. The  second  assumption, of course,  rules out  self-consistency. 

More  recently,  Bennett  and Duke 16, '' have  introduced  self-consistency  into 

a many-electron  calculation of the  one -electron  potential a t  a bi  -metallic  interface. 

A sma l l  step is made  here  toward  bringing  bare  surface  work  function 

theory up to  the  level of sophistication of neighboring  fields,  and in the  process 

to gain a greater knowledge  about metal  surface  properties in general. A 

calculation of the  work  function is presented  here for 26 metals including Na 

using  the  jellium  model. In addition the electrostatic (double layer)  barrier, 

representative  electric  fields,  electron  number density distributions and  one - 

electron  potentials  were  calculated  for  the  surface  region.  The  jellium  or  free- 

electron model is used here so that  many surface  parameters  can  be  calculated 

rather  simply.  Conclusiolls can then be made as to which surface  characteristics 

a r e  adequately  described i n  t h i s  model and which require  further  sophistication 

in  their  dcscription. Also our  understanding of the metal  surfaw c a n  be considerably 

enhanced  without undutl effort. A recent  formulation18 of the inhomogeneous 

electron  gas which includes coulomt, correlations was used i n  an  approximate 

self-consistent  first-principles  solution of the model.  The  number of "free" 

electrons  per  atom w a s  taken as the  group  number a s  listed in the  periodic 

table.  Grain  orientation  effects  were not consickred. 

We found that  exchange  and  correlation  potentials  make up the  major part 

of the  surface  barrier  for  most of the metals considered.  However,  the  ordi- 
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nary coulomb  potential ba r r i e r s  are significant fo r  all of these  metals  except 

Cs, Rb, K, and Na. Also, the results obtained  using  the  simple  model  described 

previously  show  encouraging  agreement with available  experimental data for all 

the  metals  considered. 

This  paper is divided  into  four  major  sections. In Sec. II. the basic  equa- 

tions  used are derived.  Sec. III. is devoted  to a comparison of some of the 

results obtained  with  existing  theoretical  findings.  Results  for 26 metals  and 

comparison with experimental data are presented in  Sec. IV;  Concluding 

remarks are given  in  Sec. V. 

II. DERIVATIONS 

Following  Bardeen, the free  electron or *tjelliumtt 5, 17, 19-23 model with 

planar  surface (see Fig. 1) is used. Bardeen's use of the  Hartree-Fock 

equations is not followed,  however,  because  it  provided  much  numerical diffi- 

culty.  Also,  since  the  Hartree-Fock  equations  neglect  antiparallel  spin  corre- 

lations,  attempts  to take such  correlations  into  account  are  necessarily  ad hoc 

in  nature24.  Hohenberg and Kohn" (see also  Refs. 25 -27) have  recently  derived 

a powerful  formulation of the  many-electron  problem.  This  scheme, which uses 

the  electron  number  density as the  basic  variable,  provides  considerable  simpli- 

fication and includes  all  many-electron  effects in  the  original  formulation.  Thus 

it will be used here. 

Hohenberg  and Kohn" (HK) have shown that  the  ground-state  energy, 

E,,  of a confined  interacting  inhomogeneous  electron  gas can be written as a 

functional of the  electron  number  density n (r ) .  Further, they  have  shown  that 
a 
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E, [d assumes a minimum  value  for  the  correct  n(9, if admissible  density 

functions  conserve the total number of electrons.  Thus, n(rJ can be  deter-  

mined  from 

where p is a Lagrange multiplier  such that28 p = ZIEJZIN, 
f i  

and N = n ( 9  dS. 

1 HK write 29 

(2.2a) 

where  v(r) N is a static  external  potential, G[n] = Tsp] + EXc[n], Tip] is 

the  kinetic  energy of a system of noninteracting  electrons with the same  density 

n ( 9 ,  and  EXcP] is then the exchange and correlation  energy of an  interacting 

system. 

HK derive a n  expansion of G[n] originally for the case of slowly n r y i n g  n 

in successive  orders of the gradient operator V- acting on n(s) which can be 

written as follows 3 0. . 

The integrands of the f i r s t  through third terms on the FUiS of Eq. (2.2b) 

represent  respectively  the  kinetic,  exchange, and correlation  energy  densities 
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of a uniform  electron  gas of density n. The  Wigner  interpolation formula was 

used to represent  the  correlation  energy of a homogeneous electron gas at 

metallic  densities. The fourth  term is the first of the  inhomogeneity terms, i. e., 

those terms containing  one or higher  orders of the  gradient  operator  acting 

on n. 

Several  comments  about Eq. (2.2b)are in order. First, it is shown else- 

where" that a t  least some  inhomogeneity  terms  must be included  in a work 

function  calculation.  It is well known that a simple  Thomas  Fermi  theory 

predicts that the  work  function of any physical  system is zero. We have  shown  31 

that including the homogeneous  electron  gas  exchange and correlation  energy 

terms,  but not including  inhomogeneity terms,  leads to a predicted  work  function 

which is nonzero  but is the  same  for  essentially any system.  It wil l  be seen 

in  the following  that the addition of the first inhomogeneity term alleviates this 

anomaly. 

Secondly, the random-phase  approximation was used by HK to derive the 

factor 1/72n in the f i rs t  inhomogeneity  term. Although the RPA has exhibited 

failings at  electron  densities as low as those found in  conduction bandsill, this 

inhomogeneity correction to  the  total  energy  apparently has a rather wide 

range of applicability as shown by the  successes of K i r z h n i t ~ ~ ~  and Kalitkin 33 . 

Kirzhnits  considered  isolated  noble  gas  atoms and Kalitkin  compared h i s  

results with experimental bulk properties of solids.  Also the RPA has been 

used with some  success in  metal  surface  theory 13* 34* 15. Thus  it is used here. 

Third, HK note  that a "gradient"  expansion of which the  sum of the inte- 

grands in  Eq. (2.2b) is a n  example  does not converge35  for  actual  electronic 

systems due  to number  density  variations with position.  However, they expect 

it to  be useful i n  the  sense of asymptotic c o n ~ e r g e n c e ~ ~  for  sufficiently  slowly 

- 
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varying  number densities. A formulation  based  on the "gradientv'  expansion 

has exhibited  some  successes  even for the case of atoms2', where  the 

density  variation is rather rapid.  Also K i r z h n i t ~ ~ ~  investigated  explicitly  the 

convergence of a n  expansion of  Ev[n] in  successive  powers of 8 not  including 

correlation energies. He  calculated E,[n] for the argon  atom,  and found 

in  an  approximate  manner I*  excellent  convergence of the approximation  process", 

at least when his first four  inhomogeneity  terms were included.  Finally, HK 

note that  quantum  density  oscillations are not  included in  the  expansion  given 

in Eq. (2.2b).  However, it has  been  reported" for a jellium  model  with  planar 

surface that  the Friedel oscillations  occurring  inside  the  metal are greatly 

diminished by requiring  that  the  surface  potential be self-consistent with the 

electron  number  density  distribution.  Since a self-consistent  calculation is 

done here, they are neglected.  Finally,  corrections to the Thomas-Fermi 

equation  derived by expansion  procedures have been shown by Schey et al. 

. 

37 

to be pejorative  in  many  instances.  However, they  note that expansions of 

the total energy  (as we use here), lead to "remarkable improvement." 

Keeping  only the f i rs t  inhomogeneity  term and combining Eqs. (2. 1) and  (2.2), 

one  obtains  for  our  model 

where, for self consistency, d q /dZ  = 4n[n+H( -2) -n], n+ = (positive  jellium 

charge  density,  H(2) is the  Heaviside  (step)  function, Z is the Cartesian 

coordinate taken on a n  axis normal  to  the  surface, with 2 = 0 a t  the jellium 

2 2 
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and,  in this case, v(r) is the  negative of the potential of the ion  distribution. 

Note that in  the  jelllum  model, n-n+ and all derivatives of n-0 as 
* 

Z - 4 .  Also 4pe = electron  work function" -(i3Edi3N)N=N = - p. Thus  one 

obtains (4pe is described in Fig. 2) : 
+ 

where 4p( 4) represents  the  value <p asymptotically  approaches  deep  within 

the metal  and <p is set  equal to  zero  at  large  distances  from the metal. 

It should be remembered that this is a many-electron  calculation.  However, 

Kohn and  Sham25  have  shown  that  it is possible,  formally,  to  replace the 

equations of the many-electron  problem by an  equivalent set of one  -electron 

equations. The effective  one-electron  potential  energy is given 

formally by 

A comparison of KirzhnitsVS2  first inhomogeneity term  in h i s  expansion 

in  powers of K of the  Hartree  total  energy and that in  Eq.  (2.2b)  shows  that 

they are identical.  Thus, the f i rs t  inhomogeneity term  contributes only  to 

TsLn] in the RPA. &,to O( lVnl - 2 ) in E,, 
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as given in  Eq. (2.6) is just  the  potential  energy  that  one would obtain 25 

for the highest  one-electron  energy state of a uniform  electron gas of density n 

in its ground  state.  Thus  it  follows that, at least  to O( lVnl 2 ) in  Ev, V (1) is 

equivalent  to  the  effective  potential  energy  for a state  at  the top of local  Fermi 

distributions. 

- 

V(') can  be  obtained  immediately  through Eq. (2.6) once  the  many-electron 

problem is solved,  and  it is exhibited in. several of the  figures  for the reader 

who is interested in  a one-electron  calculation. 

In order to  obtain n, i t  is certainly  simpler  to  solve Eq. (2. 3) than 

e. g. , a set  of Hartree-Fock  equations.  However, we will simplify the solution 

of Eq. (2. 1) still  further.  Let u s  assume  that  the  extrema1 of Eq. (2. 1) be- 

longs,  to a good approximation, to  the following family of functions 8,21,38: 

where p is a family  parameter. 

Note that  for  every value of p the  family 2. 7 satisfies  certain  requirements 

of self-consistency. First, n asymptotically  approaches n+ in  the metal  interior 

and zero in the  vacuum  region  outside the metal.  Secondly, - .  

[n-n+H(-Z)]dZ = 0. There  are  no experimental data on n which provide 

a direct  test of the  validity of the  family 2. 7.  It wi l l  be shown below,  however, 

that the results  obtained using these  simple  functions are in  at  least as good an 

agreement with experiment as could be expected using a flat  surfaced  jellium  model. 

The  corresponding  coulomb  potential is 
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Eq. (2.1) becomes 

d-/B 
or equivantly, 

-@ 

and cv[n] is the  energy  density, i .  e . ,  E [n] =/cv[n&, 0 is the surface  energy, 

or the energy necessary  to  cleave a metal per unit area of new surface 

formed.  Thus a is the  total  energy of the  separate  pieces  after  splitting 

minus  the total energy of the  unsplit  block. 

V 

A simple  result of analytical  manipulations of the  terms on the RHS of 

Eq. (2. 10) up to  and  including  the f i rs t  inhomogeneity term is provided 

below,  except  for  the  correlation  energy  integral  over  the range - 5 Z 5 0 .  

This  last  term was easily programmed, and is designated below3' as 

I(n+)/b. 
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This  gives 40 

where the terms i n  Eq. (2.11) are given in  the same  order as those  in 

Eq. (2.2), and where a = 2ll3 (. 079)/n+ 1/3 . 
Thus /3 can be determined by combining Eqs. (2.11) and  (2.9),  and this 

result  can be used to  determine n and <p via Eqs. (2.7) and (2.8). With 

these,  the  quantities <pe and can be determined  immediately  from 

Eqs.  (2.4)  and (2.6) respectively. 

IU. COMPARISON OF RESULTS WITH THOSE 

OF OTHER CALCULATIONS 

Work Function of Na 

Results  obtained  here, as wel l  as Bardeen's  results are listed in 

Table I.  Wigner's uncorrected"  interpolation  formula was used in  this 

instance, so that a more  direct  comparison could be made with Bardeen's 

work. 

Considering  the  different  approximations  made  in the two calculations, 

the agreement is quite good. Notice  that  the  work  function  and  coulomb 

barrier are 0.39 volts  higher  than  Bardeen's  results. No decision  can be 

made  based on the experimental data as to which theoretical value is more 

accurate.  This is because  first,  the  value  listed is for  polycrystalline Na, 
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and  secondly, there are inaccuracies  even in the knowledge of th i s  value. 

If our  results  turn  out to be  more  accurate, then the difference  may  be 

explained by the  fact  that, as stated by Loucks14,  only a partially self- 

consistent  solution was achieved by Bardeen with respect to the electro- 

static part of the problem  since  the  exchange  potentials  were  chosen a t  

the  beginning and held  fixed  throughout.  But, as noted earlier, it has 

been  reported17  that  the  Friedel  oscillations  inside the metal are greatly 

diminished by  self  -consistency  requirements.  Since these oscillations 

lead  to a "humping up"  of electronic  charge  inside  the  metal  which  lowers 

the  dipole  moment and work  function,  their  overemphasis  could lead to 

values of these  quantities which a r e  too low. 
, 

Finally,  it is clear  that this calculation  supports  Bardeen's  conclusion , 
I 

that the  surface  barrier of Na is due primarily  to  exchange and polariza- 
, 
I tion  forces with ordinary  electrostatic  forces playing a minor  role. 

Surface  Energy 

The surface  energy  for Na was  calculated by Huntington41  using Bardeen's 

potential". Table I  shows  that  the  surface  energy of Na calculated  here 

agrees  rather  well with  that  calculated by Huntington. Neither is in  good 

agreement with the  experimental value" of 0.240 joules/m2.  Herring 19 

however, has pointed  out  that  it is not f t fa i r ' f  to  compare  the  surface  energy 

cr of a jellium  metal with a n  actual  metal of the same  electron  density. 

Table I1 shows  values of u for Na, Li,  and K. The  disagreement with 

experiment is even  more  pronounced  for Li than for N a  and, in  fact, u 

goes  negative  for n+ 2 13 X T h u s  further  results  weren't  listed. 

It  should  be  noted  that  the  electron work functions and surface potential 

characteristics depend on the  variation of CJ (e. g. , da/dp in  Eq. (2 .9) )  and 
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not  on the value of o itself.  Thus,  the  fact  that  the  surface  energy results 

do not agree with  experiment  does not imply  that  the  results  for  the  work 

functions  and  surface  potentials  should not be  trusted. 

Na Surface  Potential  Characteristics 

To compare  our  for Na (see  figs. 3 and 4) with the results of 

Loucks  and  Cutler14 (see their  fig. 5), one will have to  bear in  mind  that 

our potential  pertains  to  an  electron a t  the  top of the Fermi  distributions 

whereas  they  averaged  their  exchange  contribution.  Also, as mentioned 

earlier,  they  neglect  the  small coulomb contribution.  Their  potential  curves 

are qualitatively  similar to d l ) ,  except  that  their  curves  exhibit  noticeable 

damped  oscillatory  behavior in  the interior of the  metal. A s  previously 

noted,  Bennett" et  a1  have  concluded  that  these  oscillations a r e  exaggerated 

by lack of self-consistency.  Figures 3  and 4 present  curves of V( l )  and 

relative  electron  number  densities,  respectively, in  the  surface  region of 

the alkali metals as a function of Z/rs, where rs = (3/4nn+)  1/3 . 
IV. RESULTS FOR SELECTED  METALS 

Method of Selection 

It seems  reasonable  that  all  metals usually regarded" as  "free - 

electron-like" in  their bulk properties could  be treated within t h i s  model. 

Additionally,  the  surface  properties of even  the  transition  metals  have  been 

described with a certain  degree of success within  the free  electron  model. 

Examples of such  successful  applications  are: the  Richardson-Dushman 

equation  describing  thermionic  emission,  Fowler  -Nordheim vacuum field 

electron  emission  theory42,  plasma  oscillation  characteristic loss theory , 43 

and  analysis of periodic  deviations in the  thermionic  Schottky  effect44.  Thus, 

those  metals which were i n  some way amenable  to  analysis  using  the  free- 
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electron model were chosen for consideration  and are listed in Tables 

Iv and III. 

The characteristics of the metals enter into  the  model  only  through the 

quantity n,.. Zhus values of na, the  number of conduction electrons per 

atom,  must  be  designated, For all but ,the  simplest  metals  this  choice 

is not obvious4s 45-47. However,.  some  properties  such as Fermi energies 

of many  simple  metals48  are  well  represented on a free-electron  model 

using the group  number (as listed in  the  periodic  table),  for na. The group 

number  will  be used for na for all metals  considered here. It will be 

seen that this convention yields surface barrier heights  which are consistent 

with  experiment. 

For purposes of discussion,  the  metals are grouped  according  to  common 

properties.  The alkali metals,  the  refractory  transition  metals,  and  the 

noble metals are obvious  groupings.  The  rest of the  metals can easily be 

grouped  according  to  group  number. 

' As is seen from  figures 5 and 6 the metals  considered  cover a wide 

range of electron  densities, thus, providing a stern  test  of model  and  method. 

Electron Work Functions 

Table III compares  our  results with the  experimental values for poly - 
crystalline  metals  recommended by Fomenko . It should  be  noted  that 

there is considerable  scatter in the data he collected. 

1 

Several  comments  are in  order  concerning  the findings listed in  Table III. 
First, the  theoretical  values of <pe listed increase with increasing n+. 

Secondly,  the ordering within groups by experimental  work  function (e. g. , 
low to  high), is generally  the  same as the analagous ordering  by  theoretical 

work function. Also, the  ordering of groups by average  experimental  and 
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theoretical  work  functions  respectively yields identical  results, with  the 

exception of the  noble  metals.  Finally,  it is seen  that  theoretical  work 

functions of the low nt metals  (principally  the  alkali  metals), are higher 

than  the  experimental  work  functions. But for the res t  of the  metals,  the 

theoretical  value  slips hels2w the experimental value, with  the  difference 

showing some  tendency t o  increase with n+, again with the  exception of 

the noble metals. 

One  might  be  tempted  to  ascribe the exceptions found in  the  case of 

the  noble  metals  to the choice of  na = 1. That is, although  this  choice  might 

be useful for  calculation of certain bulk properties,  it  may be argued  that 

their  surface band structure49 c a n  be significantly  different 44, 5' from 

that of the  bulk.  However, a recent  surface  experimental  determination 

of the  inner  potential of Cu gives a value51 which is consistent with the use 

of n = 1. Inclusion of grain  orientation  effects  may  clarify  matters. a 
A decision based on comparison of experimental data and  theory  should 

be  made as to the  accuracy of the jellium  model in the  prediction of electron 

work  functions.  This  decision is complicated by the fact  that  there  are, 

of course, errqrs i n  the  experimental  data  and that grain  orientation  effects 

are not included i n  the calculation.  r'rom  the  preceding  discussion we have 

seen tha.t there is a general  agreement i n  the ordering of the  theoretical 

and  experimental work  functions  within  groups  and in  the ordering of group 

average work functions.  r'urther, the deviation of the  theoretical  work 

functions  above or   be low the  experimental  values listed is within the range 

of variation  conceivably  caused by grain orientation  effects  for  the bulk of 

the  metals  considered.  But the entire  range of experimental  work  functions 

is only about 2. 5 volts.  Thus,  although  the  theoretical  values  generally 
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pass the test of comparison  with  experiment, it is not as stringent a test 

as one  might  desire. 

But the surface potential characteristics  can be turned to for  further 

testing. It will be seen in  the next  section that experimental barrier heights 

vary by about 25 volts.  This  should  provide a much more  difficult test 

for the  theory. 

Surface  Potential  Characteristics 

The results for  electric field, barrier height,  and electrical double 

layer  are listed in  Table IV. Sample  plots of V(') are given in  Figs. 3 

and 6-8. Included also on some of  the  plots is the  function -1/4Z. Although 

all surface  potentials  must  asymptotically  approach the image  potential a t  . 

large distances  from the metal, a n  ambiguity arises because it is not clear 

where  to  place  the Z = 0 plane  (appropriate  to the function -1/4Z), 

with respect  to the jellium  surface.  Thus the function -1/4Z is not neces- 

sa r i ly  the  image  potential,  but can be  used  for scaling purposes. 

Several  trends  can be inferred  from the results. First, the listed barrier 

heighfs  (maximum  value of V (1) ) increase with increasing n+. Secondly, 

although  generally  the  better  part of the surface  barriers are due to  many- 

body effects, the ordinary  electrostatic  contribution to the barrier is small  

only for  the alkali metals  through Na. In fact, for some of the  refractory 

transition  metals,  the  dipole  barrier is more than half of the  total barrier. 

A comparison of calculated  total barrier heights with experiment  for 

electrons at the Fermi  level  provides  another  check on the validity of using 

the  group  number  for na. Since  the barr ier  height is quite  sensitive  to na) 

and since it was only desired  to  check  reasonableness i n  the choice of na, 

listing of experimental  values was not made  exhaustive or necessarily  latest- 
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word. In comparing  our 

one  must  remember that 

theoretical  values of barrier heights with experiment, 

the  effective  potential seen by an  electron  depends 

on its velocity. A s  previously  pointed out applies  to  electrons at the 

Fermi  level and thus  values of the  surface  barrier  obtained  from say electron 

interference  microscopy may well  not be descriptive of the  maximum  mag- 

nitude of Also, as mentioned  earlier, it is not necessarily true that 

the  experimental barrier height  should  be  given by the  experimental value 

of the  work  function  added  to the experimental  or  theoretical bulk Fermi 

energy.  For  example,  D'Haenens and coo me^^^ point  out that,  following 

this procedure, one would obtain lower  total barr iers  than their  (surface) 

experimental  values  indicate  (see,  however,  Ref. 52). These  authors  explain 

that  the  energy-level  system  could  understandably  undergo  modification a t  

the surface". Thus  wherever  (surface)  experimental  values of the  surface 

barrier for  electrons near the Fermi  level  were known to differ significantly 

from the sum of the bulk r'ermi  energy and electron work function, the re- 

sult of the surface  experiment was used i n  Table IV. A comparison of 

theoretical  and  experimental  barrier  heights  listed in Table IV shows  that 

the  values  generally  agree within experimental error.  This  lends support 

to  the use of the group  number  for na. 

Additionally, a comparison of plasma  oscillation  theory  results with 

the data obtained in  surface  characteristic loss experiments can  be  used 

to  determine na (see,  e. g. , Ref. 43 or  Ref. 53). The results of these 

authors  support the use of the group  number  for na fo r  many metals. 

Finally,  electric fields were  calculated. It follows  from Eq. (2.8) 

and  the  values of [j listed in  Table I1 that  the electric  field  (dq/dZ)  varies 

rapidly with position, a lways pointing out of the metal, Now in  a real 

\ 
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metal  there are very  strong  fields in  the ion cores  (experienced  generally 

by  the core and not the  conduction electrons), which are not present in  the 

jellium  model.  Therefore the electric  field is calculated a t  a somewhat 

arbi t rary pair;; outside  the  metal  surface (Z=3(a0)) where the result  should 

be free of strong  core field effects. 

The  listed values of the fields calculated at  the  aforementioned  point 

increase with n+, increasing by roughly a: factor of fifty  in  going  from  the 

alkali metals to the refractory  tra.nsition  metals. 

Semiempirical  calculations of electric fields as seen by adsorbed 

particles on and tungsten 55, 56 agree rather well  with the 

theoretical values obtained  here. 

V. CONCLUDING  REMARKS 

The  following  generalizations can be  inferred  from the results obtained 

here: 

(1) There is approximate  agreement  between the experimental data and 

the work  functions  and  surface  potential  characteristics  obtained here using 

the'free electron  model. This lends  support  to the 

premise that it may be possible  to  calculate  rather  accurate values for  some 

metal  surface  characteristics via introduction of refinements to this  simple 

model.  This  may  even be so for  some of those  metals  whose bulk character- 

istics are not so easily described, e. g. , the refractory  transition  metals. 

f2) Many-body effects  were found  to be of importance in all cases and 

ordinary  electrostatic  effects  are  quite strong fo r  many of the metals  con- 

sidered. 
" 
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TABLE I. - A  COMPARISON WITH BARDEEN'S RESULTS 

Neglectingd 
correlation 
energies 

and correlation 
energies 

Neglecting exchange 

FOR WORK FUNCTION, COUUlMB BARRIER 

AND SURFACE ENERGY  FOR Na 
_ _ _ _ _ _ _ _ - .  . ~ - - . .  

Double layer  moment, 

eV 

Here 

0.786 
0.978 

3. 12 

Sardeen 

0 . 4  
-1 

-4 

1 
____ . - 

Work  function, 

Ierec 

2.74 

eV 

L 

Surface  energy 

joules/m 2 

7 Here Bardeen 

3.112  0.088 

L 

a A value listed for work  function is Fomenko's  recommended  value. 1 

The actual calculation of,the surface  energy  using  Bardeen's  results  was 

&ne by Huntington. 

Wigner's  uncorrected  interpolation  formulalo was used  here  since  Bardeen 

used it. 

41 

The ti expansion of K i r ~ h n i t s ~ ~  was used. 
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TABLE II. - SURFACE ENERGIEB 

OF K, Li, AND Na - 
COMPARISON OF RESULTS 

Metal Surface  Energy  (joules/m ) 
2 

Theory Experimentala 

K 

02L1-Q 0.132 Li 
0.240 0.111 Na 
0.146 0.0688' 

a Ref. 20 
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TABLE lII. - WORK FUNCTIONS OF 

Metal 

- 
cs 
Rb 
K 
Na 
Li 

Ag 
Au 
c u  

C a  
Mg 
Cd 
Zn 
Be 

La 
T1 
In 
Ca 
A1 

Sn 
pb 

Ta 
Nb 
W 
M o  
Re 
Ir 

SELECTED METALS - 
COMPARISON OF RESULTS 

g n+(XlO 1 

3- 

(a. u. ) 

1 
1.67 1 
1 .33  

6 . 9 2  1 
3 . 7 7  1 
1 .95  1 

1 8 . 7 3  
1 8 . 8 0  
1 12 .6  

2 6 . 9 0  
2 12 .8  
z 13.8  
2 

35 .8  2 
1 9 . 5  

3 1 2 . 0  
3 15 .4  
3 

2 6 . 9  3 
2 2 . 3  3 
1 7 . 0  

I 17.4 
I 19.4  

i 4 1 . 3  
i 4 1 . 6  
j 56.2  
i 57 .4  
I 7 0 . 4  
j 8 4 . 2  

Work Function  (ev) 

Theory 

1 .33  
2 .71  1 .32  
2 .64  

3.  11 1 .24  
2 .93  1 .27  
2 .76  1 .32  

1 .23  3. 19 
1 .23  3. 19 
1.23 3 .32  

1.24 3. 11 
1 .22  3 .33  
1.22 3. 36 
1.22 3. 50 
1.26 3.  75 

1.22 3.  30 
1.22 3 . 4 0  
1.22 3 .44  
1.23 3 .56  
1.24 3 .64  

1.22 3 . 4 5  
1.22 3 . 5 0  

1.27 3 . 8 0  
1.27 3 .81  
1.30 3 .91  
1.30 3 .92  
1.32 3 .98  
1.34 4 .02  

Experimental' 

1 .81  
2 .16  
2 .22  
2 .35  
2 .38  

4 . 3  
4 . 3  
4 . 4  

2 . 8 0  
3 .64  
4. 1 
4 . 2 4  
3 . 9 2  

3 . 3  
3 . 7  
3 . 8  
3 .96  
4 . 2 5  

4 .38  
4 . 0  

4 . 1 2  
3 . 9 9  
4 . 5  
4 . 3  
5 . 0  
5 . 3  

a Value listed is Fomenko's recommended  value. 1 
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TABLE IV. - SURFACE  POTENTIAL CHARACTERISTICS OF 

SELECTED META& 

Uectric fieldb (V/m: 

5. 62X108 
5.8eX108 
8 . 6 2 ~ 1 0 ~  

4 . 4 2 ~ 1 0 ~  
8 .  8m108 
9. 48X1O8 
1 . 3 1 ~ 1 0 ~  
2 . 1 ~ 1 0 ~  

1.0% lo9 
1. 1 tmo9  

~ . . ~ ~~~ 

8 .  22X108 

1 . 4 7 ~ 1 0 '  
1 . 7 1 ~ 1 0 '  
. 

1 . 1 ~ ~ 1 0 ~  
1 . 3 1 ~ 1 0 ~  

2 . 3 4 ~ 1 0 '  
2 . 3 %  IO9 
2 . 8 6 ~ 1 0 ~  
2 . 8 ~ ~ 1 0 '  

3.  6m109 
3 .25~10 '  

~ . .  

__ 

Bzrrier height (eV) Double layer   (e t  

rheoryc 

4 .22  
4.54 
4 . 7 9  
6 .04  
7.84 

8 . 7 0  
8 .74  

- 

-~ 

10.4 
~ 

7.82 
10. 5 
10.8 
12.9 
17.9 

10. 1 
1 1 . 5  
1 2 . 0  
13.9 
15. 3 

12 .2  
12.9 

19.4 
19 .5  
23.0 
23.3 

~ 

~ 

26. a 
29.0 

Ixper imenbl  

0.258 
0.327 

. 4.85d 0.794 
4. 12d 0.386 

6. Wd 1.55 

11. Id 

1.99 
2 .01  
2. D l  

5. Qd 
9. 81d 

15. 24d 
17.  72d 

1.55 
2.95 
3. 18 
4 . 4 5  
7.76 

16. 05d 

2.77 
3.55 
3 .90  
5.06 
6.00 

13. 78e 
3.98 
4 .43  

22 -24' 
21 -2d 

8 . 7 8  
8.84 

11.4 
11.6 
13.8 
15.9 

'The quantitiee  Ueted  here are obtained  self-considcntly with 

those lleted  in  Table 111. 

bEvaluated a t  2 = 3(a0) 

CMaximurn  magnitude of V (1 )  

b h i n e d  by adding Fomenko's 1 recommended  work  function  to X-ray emisaion 

band  widthe a8 lleted in Wilson" 

eThe  Fermi  Energy as given by AnderaonS7,  et a1 is added to Fomenlro*r' 

recommended  work  function 

'Ref. 44 
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Flgure 1. - Elcctrmk and p o r l t l v e  charge densities lor (he 
jclllurn model. 

Z 

I /  Tdal br i ier  h e m  

Flgurc 2. - Rclatlon Mween the electron work function, w e , ,  
the Fermi  energy, EF, and the elfcctive one-rlectron pdentlrl 
enorgy lor a rt1e 11 the top d the  Fermi dirtrlbutlons, $ * I .  
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Figure 3. - V( l )  in the  surface  region of the  alkali metals. 
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Figure 4. - Relative  electron  number  density  distribution in the 
surface  region for the  alkali metals. 
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